
Nevertheless, the opening summary from my proposal expresses the “find and fetch” use case

which the IETF community lacks for its more than 8,000 specifications (referred to as “Request for

Comments” (RFC). As I am the author of this proposal, I’ll reproduce a lengthy excerpt here:

“Many specifications relevant to technical projects are maintained and promulgated
by global and national standards bodies. But it is difficult for technical designers
and developers to efficiently recall and to keep abreast of updates to the large
number of standards that are in effect, and directly applicable to their tasks or
components at any given time.

We propose a collaborative project of iterative experimentation using selected
standards documents of the Internet Engineering Task Force (IETF) as sample
requirements (i.e. BCP, Best Current Practice documents). Factors that invoke
particular requirements of a small representative sample of the standards will be
expressed as computable ‘control tables’. Sample unit tests will be designed and
run to simulate the normal technical work of creating, maintaining or diagnosing
Internet subsystems or services. The free/libre/open “Internet of Rules”
specifications and components (currently at alpha testing stage through
Xalgorithms Foundation) will provide the automated rules discovery method.

The purpose of the experiment will be to determine if sufficient contextual and
operational data can be generated from unit tests to automatically find and return
the correct technical requirements to the working developer, as needed. If this
method of automated rules discovery can be made to work with some initial very
simple tests, additional tests will be designed with incrementally increasing
complexity and uncertainty, until a practical limit is determined.

The objective of this experiment would be to determine if Xalgorithms “Internet of
Rules” specifications and component may provide a practicable and effective method
for designers and developers to receive a discrete, helpful interface to the specific
requirement statements from the applicable standards ‘in the moment’ as they are
testing some element of their implementation. This is the scenario within which they
are most likely to be paying attention to conformance considerations, and will have the
opportunity to act on such information to enhance conformance.” (Potvin, 2019b)

5.4 Rules as Data

5.4.1 Data Structure of [rule.dwd] Records

Earlier in this dissertation it was put forward that:

• A rule is an imperative statement of obligation, permission or encouragement among people;
• Documentation about a rule is a declarative statement as a ‘normative proposition’;
• Applicability and invocation of a rule to a circumstance is an empirical statement of deduction.

In the DWDS, a rule-maker agent communicates imperative assertions with normative propositions to

assist rule-taker agents with empirical deductions. Obligation, permission or encouragement among human

and machine ‘agents’ may be communicated with optimal efficiency in a complex dynamic multi-objective

multi-constraint setting.62 The end-to-end information transmission must be intuitive enough for a broad

62 This is unlike ‘maximum’ efficiency in terms of a single criterion.

198 Joseph Potvin: Thesis

population of human rule-maker agents and rule-taker agents to communicate normative propositions

among themselves without having to know formal data processing or computer programming methods, and

yet it must also structure the transmitted information precisely enough to be readily parsed and processed

on any computing platform the rule-taker agents may prefer to employ or delegate to.

The default deployment of any node in a network which implements the DWDS includes all three

loosely coupled components, RuleMaker, RuleReserve and RuleTaker. RuleReserve provides a passive

data storage service to RuleMaker, and a passive data sifting service to RuleTaker. Users of RuleMaker

applications and of RuleTaker components can have their own Subset RuleReserve nodes, or they may

decide to have external third-party suppliers of RuleReserve nodes bundled with services for quality

assurance, security, up-time guarantees, and error and omissions insurance. These function together as a

type of data ‘pipeline’ (von Landesberger et al., 2017). RuleReserve receives an [is.dwd] request message

from RT instances, and employs its descriptive data about a particular circumstance as a virtual sieve to sift

‘in effect’ and ‘applicable’ [rule.dwd] records from its entire collection, as well as any [lookup.dwd] tables

that those rules require to operate. First RuleReserve sifts for rules ‘in effect’ to get an intermediate list, then it

sifts again for rules ‘applicable’. What remains is packaged into an [ought1.dwd] message and provided back

to the requesting RuleTaker instance. At that point, RuleTaker will then sift the logic gates of each [rule.dwd]

record in the [ought1.dwd] rows to determine what output assertions are actually ‘invoked’, and from this

generate an [ought2.dwd] message that is delivered to the end-user, or their application or machine. (End

users have the option to have RT run an additional round of ‘in effect’ and/or ‘applicable’ sifting operations

with a revised or refined [sieve2.dwd] prior to resolving the logic gates.)

The DWDS enables three parallel representations of the same ‘rules-as-data’:
• General users get a graphical interface that prioritizes their comprehension of the information;
• Technical users and machines get a JSON record prioritizing data integrity and transmissibility;
• Machines get an indexed record that prioritizes storage efficiency and processing speed.

Every human-accessible [rule.dwd] record, upon commit from a RuleMaker application to a

RuleReserve node, is immediately pre-parsed into directly-processable data, so that it does not have

to be parsed again at compute time. A parser in RuleMaker uses a pre-defined grammatical

framework to transcribe it into a hierarchical data structure, and in RuleReserve this data is splayed

out along a single row of the wide-column distributed database. In this form of storage, each row of

data can be processed in aggregate with any number of other rows containing [rule.dwd] or

[lookup.dwd] records. RuleReserve nodes have two functions: immutable storage and fast columnar

data sifting.63

63 Early experimental prototyping employed MongoDB for storing JSON files, and Cassandra for fast columnar
queries, which could be swapped for ScyllaDB for faster performance.

DWDS Technical Rationale and Design Summary 199

In order to accommodate input variability that can be expected from diverse rule authors on a

decentralized network, it would be optimal to employ a ‘recursive descent’ style of parser

configured with several parsing algorithms. In the event one method fails, it returns to the beginning

of the record and attempts an alternative available parsing method. When a record cannot be parsed,

a notification with diagnostic evidence is provided to the current user and to the event log. Every

RR node interacts with RuleTaker (RT) clients through network data streaming that logs requests

and responses.64 The event log can be analyzed for patterns, which could indicate potential

improvements.

The sifting operations of DWDS depend upon the data structure of [rule.dwd] records. We’ll use the

JSON format to illustrate this, but the reader should keep in mind that a CBOR representation, and the

human-optimized graphical form, and the machine-optimized horizontal tape form are concurrent and

informationally equivalent. Tables 25 and 26 show the sample rule (Grocery Store Delivery Policy) in

eight sections, which are coloured for clarity. The first five sections provide classes of metadata about

each rule, which are used for sifting operations of the RR network. The rule logic of sections 6 through 8

are used for logic gate sifting within RT components.

Table 25: Sections of a [rule.dwd] Record in JSON

Metadata Used by RuleReserve
 Data used to sift for rules ‘In Effect’ and ‘Applicable’

Logic Data Used by RuleTaker
Data used to sift for rules ‘Invoked’

1. Rule Identity
2. RuleMaker Identities
3. Linked Rules or Lookups
4. GIVEN this Context: Where and when this rule is 'in effect'.
5. WHEN these Categories: Activities and things
 to which this rule is 'applicable'.

6. WHEN these Input Conditions
7. THEN these Output Assertions
8. Output Weights and Characteristics

64 This can be implemented with Kafka, Pulsar, or equivalent.

200 Joseph Potvin: Thesis

Table 26: JSON Representation of a Sample [rule.dwd] Record
{
 "id": "24f44897-b6ad-4ca0-8f7d-03c059b08e86",
 "uuid": "24f44897-b6ad-4ca0-8f7d-03c059b08e86",
 "rule_id": "24f44897-b6ad-4ca0-8f7d-03c059b08e86",
 "rulereserve_nodes": "*",
 "version_standard_url": "https://semver.org/",
 "dwds_schema_version": "0.0.0",
 "properties": {
 "id": "24f44897-b6ad-4ca0-8f7d-03c059b08e86"
 },
 "metadata": {
 "rule": {
 "120_title": "Grocery Store Delivery Policy",
 "240_summary": "",
 "960_explanation": "When our standard delivery box is
more than half full and also contains at least $100.00 in
value of groceries, we provide free delivery. This does not
apply to non-standard boxes. For all non-standard boxes,
when delivery is provided we do",
 "version": "0.4.0",
 "criticality": "",
 "url": "https://www.grocersonline.com/deliverypolicy",
 "rulemaker_entity": [
 {
 "name": "Xalgorithms Foundation",
 "url": "https://www.xalgorithms.org",
 "uuid": "2171eb5f-a819-4ff9-bcda-e3edb4dc7e4d"
 }
],
 "rulemaker_manager": [
 {
 "name": "Joseph Potvin",
 "email": "jpotvin@xalgorithms.org",
 "contact": "",
 "uuid": "0d304b5d-9c3c-4606-8abe-45fe1835dfbe"
 }
],
 "rulemaker_author": [
 {
 "name": "Joseph Potvin",
 "email": "jpotvin@xalgorithms.org",
 "contact": "",
 "uuid": "78042f34-ebe1-4aa4-851c-a0563ee1c423"
 }
],
 "rulemaker_maintainer": [
 {
 "name": "Joseph Potvin",
 "email": "jpotvin@xalgorithms.org",
 "contact": "",
 "uuid": "69c3e2e9-3dc1-453b-a568-3172b80c9d18"
 }
],
 "linked_rules_or_lookups": [
 {
 "dwds": "",
 "column": [],
 "row": [],
 "value": []
 }
],
 "in_effect": [
 {
 "country": "CA",
 "subcountry": "CA-ON",
 "timezone": "UTC-05:00",
 "start": "2021-12-31T05:00:01.000Z",
 "end": "2023-12-31T04:59:59.000Z"
 }
],
 "category_applicable": {"industry_classifications": [
 {
 "isic_code": "4721",
 "isic_name": "Retail sale of food in specialized
stores"
 }
],
 "good_service_asset": [
 {
 "unspsc_code": "78142100",
 "unspsc_name": "Logistics operation management"
 }
]
 },

"input_conditions": [
 {
 "sentence":[
 {"determiner":: "The"},
 {"noun": "capacity" },
 {"description": "of this box" },
 {"past_participle_verb": "used" },
 {"predicate_verb": "is" },
 {"attribute": ">=half"}
],
 "scenarios": ["00", "01", "01"]
 },
 {
 "sentence":[
 {"determiner":: "This" },
 {"past_participle_verb": "measured" },
 {"noun": "box" },
 {"attribute": "type" },
 {"predicate_verb": "is" },
 {"description": "standard"}
],
 "scenarios": ["11", "11", "01"]
 },
 {
 "sentence":[
 {"determiner":: "The" },
 {"noun": "value" },
 {"past_participle_verb": "contained"},
 {"description": "in this box"},
 {"predicate_verb": "is"},
 {"attribute": ">=$100"
 }
],
 "scenarios": ["11","00","01"]
 }
],
"output_assertions": [
 {
 "sentence":[
 {"determiner":: "The"},
 {"past_participle_verb": "advertized"},
 {"noun": "delivery"},
 {"description": "of groceries"},
 {"predicate_verb": "is"},
 {"attribute": "offered"
 }
],
 "scenarios": ["00","01","01"]
 },
 {
 "sentence":[
 {"determiner":: "The"},
 {"past_participle_verb": "advertized"},
 {"noun": "price"},
 {"description": "of the delivery service"},
 {"predicate_verb": "is"},
 {"attribute": "charged"
 }
],
 "scenarios": ["00","01","00"]
 }
],
 "output_weight": {
 "character": "0",
 "enforcement": "8",
 "consequences": "17",
 "rule_group": ""
 },
 "output_characteristics": {
 "ultimate_responsibility": "rule-taker",
 "primary_normative_verb": "may"
 "normative_orientation": "affirmative",
 "primary_action_verb": "to_do",
 "rule_rationale": "practical",
 “rule mood”: “declarative”
 }
}

DWDS Technical Rationale and Design Summary 201

Any [lookup.dwd] table can be similarly represented in JSON, CBOR, human-optimized graphical form, and

machine-optimized horizontal tape form without the syntax. Table 27 shows a small [lookup.dwd] table with

two ISO 3166-1 country codes, and a column for the current value of the xyz_index.

Table 27: A Simple Lookup Table

xyz_index

3166-1 CA 24.07
3166-1 CL 23.65

This can be written in JSON as follows:
[
 { "3166-1" : "CA", "xyz_index" : "24.07" },
 { "3166-1" : "CL", "xyz_index" : "23.65" }
]

When autonomous parties on a decentralized network are publishing their own [lookup.dwd] records for

general use, there is a natural incentive to use standard data schemas, in effect, standard application

programming interfaces (API), so that their tables will operate for the intended users.

5.4.2 Transmission Protocols for Data with Direction

The default network connection configuration of the RuleMaker, RuleTaker and RuleReserve

components is “hypertext transfer protocol - secure” (https:) over transmission control protocol (TCP)

port 443 for encrypted network transmission of [is.dwd] and [ought1.dwd] transitory messages, and the

“InterPlanetary File System” (ipfs:) over port 4001 for network storage and retrieval of whole

[rulereserve.dwd] and [lookup.dwd] persistent records to populate SupersetRuleReserve nodes. In this

scenario, all messages and transmitted records mingle with general Internet traffic. An Internet of Rules can be

operationalized with existing firewall and Internet traffic management settings, and network administrators have

no unconventional configurations to deal with.

DWDS uses IPFS as a general-purpose resilient content delivery network (CDN), that’s to say, a

geographically distributed network of servers choreographed to provide simple efficient storage and fast

delivery of whole files of tabular data over the Internet for data processing on SQLite by RuleReserve

nodes and by RuleTaker components.65

A chosen design premise of the DWDS is that data which embodies intrinsic normative direction

(obligation, permission and encouragement) is a distinct class of data. One may reasonably consider

whether the communication of rules might usefully shift to a network path that is dedicated to this class of

data, in order to enable more effective and efficient end-user monitoring. This could be appropriate when

[is.dwd] and [ought1.dwd] messages and [rule.dwd] and [lookup.dwd] resources carry data that stakeholders

deem to carry significant weight for monetary, safety, security, ecological and liberty standards.

The DWDS does not require, but describes for consideration the potential for a new ‘Data With Direction

65 The initial suggestion for our design to use IPFS came from Calvin Hutcheon, and the choice to employ it as our
persistent storage method was made jointly with Don Kelly.

202 Joseph Potvin: Thesis

	5.4 Rules as Data
	5.4.1 Data Structure of [rule.dwd] Records
	5.4.2 Transmission Protocols for Data with Direction

